Challenge
Rotek needed to design a pre-inspection simulation model to reduce the time required to inspect the last stage blade roots of the rotors in the low pressure areas of steam turbines.
Solution
Using Maple, Rotek was able to create a precise model of the ultrasonic inspection routine. The inspection parameters, including the optimal ultrasonic equipment settings and most critical shot locations, were verified before actual testing began.
Result
Rotek reduced the time required to perform a rotor inspection from 7 days to 2 days, saving critical downtime of the steam turbine and reducing inspection costs significantly.
Rotek, the maintenance branch of Eskom, South Africa’s state-owned electricity provider, is using Maple, the technical computing software from Maplesoft, to design a comprehensive pre-inspection simulation model for use in the ultrasonic inspections of turbine blades in power plants. Because minimizing downtime in power plants is critically important, the use of Maple is allowing inspections to be conducted more quickly and more precisely than ever thought possible.
Steam turbines extract thermal energy from pressurized steam, which is used to generate the turbine’s rotary motion, which then drives the electrical generator. There are three distinct parts to the steam turbine: high pressure, intermediate pressure and low pressure. When in use, turbine blades in the low pressure area are one of the most highly-stressed components of the machine. A critical element of a blade (and an area of greatest vulnerability) is the last stage blade root, the portion of the turbine blade that connects to the rotor. These blades are subject to enormous centrifugal forces during the turbine operation, especially during the start-up and shutdown of the machine, and the constant force can ultimately result in damage to the blade. Most common is an initial crack in the blade root which can propagate deeper into the blade. Therefore, the blades, especially blade roots, must be inspected and maintained regularly.
The turbine blades must be inspected in situ (in position) because removal of the blades for inspection is time consuming. However, the examination of the blades is complex due to the location of the blades, the complexity of the blade shape, limited access points for inspection and the varying surfaces of the rotor and blades on which to install inspection tools. The inspection must be well planned to avoid unnecessary downtime of the machine.
Contact Maplesoft to learn how Maple can help with your projects